技術文章
Technical articles如何獲得高質量、高精度的激光是激光技術基礎研究和應用研究中廣受關注的課題,而人工智能算法正是實現激光光束質量預測和調控的有效手段。針對現有簡單仿真模型對復雜光學系統預測能力不足的問題,哈爾濱工業大學劉國棟團隊將深度神經網絡與Frantz-Nodvik方程相結合,提出了一種優于傳統擬合方法的大功率ICF激光系統中主放大器輸出能量預測新方法(圖1)。國防科技大學周樸團隊不僅利用深度學習技術實現了少模光纖激光器光束傳播因子M2的準確預測,還通過深度學習網絡補償和優化算法消除了高功率...
研究背景高功率飛秒激光在太赫茲產生、阿秒脈沖產生和光學頻率梳等科研領域和工業領域有著重大應用價值?;趥鹘y塊狀增益介質的鎖模激光器在高功率下受到熱透鏡效應的限制,目前輸出的最大功率在20W左右。薄片激光器利用多通泵浦結構,將泵浦光多次反射至厚度為百微米量級的片狀增益介質上,以實現高效率的泵浦吸收。極薄的增益介質結合背向冷卻技術,大大減小了熱透鏡效應與非線性效應的影響,可實現更高功率的飛秒脈沖輸出。結合克爾透鏡鎖模技術的薄片振蕩器,是目前獲取脈沖寬度為百飛秒量級的高平均功率激光...
研究背景正如沒有相同的兩片葉子一樣,世界上也沒有一模一樣的兩個細胞。細胞作為生命的最小單位,承載著許多絢麗生命現象的發生。每個細胞都是無二的,異質性是細胞的天然特性之一,看似相同的一群細胞,其內部有可能存在著本質的差別。研究單個細胞可以很好的認識到細胞異質性,更好的對疾病進行解讀。單細胞分析對細胞異質學、遺傳代謝、基因工程領域及毒性檢測方面的研究具有重要意義,而單細胞分析的前提是捕獲單個細胞并形成單細胞陣列。目前,常用的細胞捕獲方法大多數與微流控技術相結合,主要包括單光束激光...
研究背景光電探測器是一類具有代表性的光電器件,可根據各種原理將光信號轉換為電信號,在高速光通信、航空航天、深空探測、環境監測等領域具有廣泛應用。根據光電探測器的工作波長,分為寬帶光電探測器和窄帶光電探測器。寬帶光電探測器波長范圍覆蓋紫外,紅外和可見光區域,主要應用在多色光探測和成像方面,窄帶光電探測器可用于光學成像、通信和生物傳感等方面。金屬納米顆粒的表面等離激元共振效應(SPR)是由入射電磁波誘導金屬納米顆粒共振產生的,對入射波長敏感性高,基于金屬納米顆粒的鈣鈦礦光電探測器...
研究背景雙光子激光直寫是一種新興的微納加工手段。該技術利用飛秒激光使光刻膠在激光焦點位置發生雙光子聚合,特征尺寸可達百納米級,結合壓電位移臺或激光掃描器件可實現高精度任意三維結構制備。目前,該技術已被廣泛應用在微納光學、材料、生命科學、微流控、微機械、集成光學等多個重要領域。多光束并行刻寫技術可有效提升刻寫速度,是雙光子激光直寫技術進一步提升與發展的重要途經,有望實現高精度、大尺寸結構的高速加工。然而目前的并行刻寫技術在產生方式、刻寫策略以及拼接精度方面還有不少問題,需要不斷...
線結構光:測量三維形貌的利器線結構光法是將線狀結構光投射到被測物體表面,形成由被測物體表面形狀所調制的光條三維圖像,將線激光輪廓儀與精密運動平臺組合,按照規劃軌跡進行運動,可實現目標區域的高效高精度三維形貌測量,具有系統穩定、結構緊湊、精度高、量程大等優點,在三維測量領域得到了廣泛運用。傳統的線激光輪廓儀與工件做相對直線運動的測量方式對線性運動平臺的精度要求較高,且系統占用空間大,不易實現在位精密測量;輪廓儀固定、工件旋轉運動測量時,測量范圍有限。在航空航天領域,工件尺寸通常...
量子點激光器技術基礎量子點激光器在半導體激光器技術領域具有顯著優勢,相比傳統的量子阱器件展現出更優異的性能表現。這些微觀結構在三個維度上限制電子和空穴,產生的光學和電子特性,使其在高功率應用和先進光通信中表現。圖1:量子點激光器炒作周期及技術優勢對比圖,展示了從1995年到2025年量子點激光器技術的演進過程,以及與硅基光電子和薄膜鈮酸鋰等外部調制技術的協同發展。InAs/GaAs量子點激光器的核心優勢包括出色的溫度穩定性、顯著降低的背反射敏感性、多波長生成能力、窄激光線寬、...
長光程氣體吸收池的核心在于利用光學反射原理,在有限體積內實現光路的多次折返,從而顯著延長光與氣體的相互作用路徑(光程)。其理論基礎為朗伯-比爾定律:氣體對光的吸收強度與光程長度、氣體濃度成正比。通過增加光程,可提升檢測靈敏度,尤其適用于痕量氣體分析。長光程氣體吸收池的優勢:1、高靈敏度:光程倍增顯著提升吸收信號,適用于痕量氣體檢測。2、緊湊設計:在有限體積內實現長光程,降低設備占地面積。3、環境適應性:通過溫度/壓力控制消除外界干擾,確保測量穩定性。關鍵參數:1、有效光程長度...